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Abstract

Text documents of varying nature (e.g., sum-
mary documents written by analysts or pub-
lished, scientific articles) often cite others as
a means of providing evidence to support a
claim, attributing credit, or referring the reader
to related work. We address two new tasks:
(1) evidence linking — given a sentence which
cites a source paper, predict the most relevant
pieces of text within the said source (i.e., the
text which warrants the citation); and (2) dis-
course prediction — predict the type of con-
tent that is implicitly cited (e.g., hypothesis,
method, results, etc). We detail our initial
discriminative-based experiments and results,
lessons learned, and ideas for future work.

1 Introduction

The amount of online documents continues to grow
at an astonishing rate, partly due to the ease to which
users can generate content (e.g., social media, Web
2.0, Wiki* articles). Further, many different types of
documents link or cite other documents (e.g., web-
sites, research articles, analyst summary reports),
and for various reasons: to attribute credit, provide
evidence, refer the reader to related work, etc. Due
to there being an abundance of documents which cite
one another, it could be highly useful to have a sys-
tem which, given a sentence which cites a document,
could automatically return the most relevant sen-
tence(s) from the cited document. We refer to this
task as evidence linking. The sentence within the
citing document which has the citation is referred to
as the citance.

In addition, we also aim to predict the type of evi-
dence each citation represents. The five pre-defined
options follow:

• Hypothesis Citation

• Method Citation

• Results Citation

• Implication Citation

• Discussion Citation

These two tasks, evidence linking and discourse
prediction, were constructed by NIST and com-
prised their TAC 2014 Biomedical Summarization
Workshop.

We describe related work in Section 2, along with
our methods in Section 3. Our experiments and re-
sults are detailed in Section 4. We quickly discuss
our ideas in Section 5, and we conclude our work in
Section 6.

2 Related Work

At a more broad scope, many have researched the
task of citation prediction – that is, given only a
document’s text (we will refer to this document as
the report), try to predict which documents it cites
as sources (selecting from a large corpus of candi-
date sources). The seminal work in this task started
with Hofman and Cohn’s PHITS system [4] which,
based on probabilistic latent semantic analysis [5],
predicted citations based on documents’ (i.e., can-
didate report-source pairs) similarity in topical con-
tent. Extending this work, Erosheva et. al. [2] re-



placed PLSA with LDA [1] as the fundamental gen-
erative process. Later, others researched alternative
LDA-based, generative model [10] [7] [8] – all of
which, at testing time, determines if a document (re-
port) cites another particular document (source) by
sampling from a random variable (often a Bernoulli
distribution), which is parameterized by the topic
distributions. These systems are agnostic to the ac-
tual citances – the sentences which contain the ci-
tation – and do not assume knowledge of which
sentences within the document/report will cite other
documents. Assuming such knowledge was consid-
ered in the research by Huang et. al. [6], Kataria, et.
al. [7], and He et. al. [3]. Again, all of the past re-
search mentioned so far concerns trying to do predict
which documents/sources are cited, given the origi-
nal report document.

To the best of our knowledge, using the report
documents at large – regardless of if one assumes
knowledge of the contained citances – to predict a
finer-grain relevance/evidence within the cited doc-
uments is a new area of research. That is, instead of
predicting the source documents that are cited, the
source documents are provided, and the task is to
predict the most relevant pieces of text which justify
the source being cited.

Using citances, in general, is not entirely novel
though: White [11] provides an overview of citation
research and states that using citances and their re-
curring themes of textual content is one of the three
main sub-areas of citation research. In this direc-
tion, Nakov et. al. [9] leveraged the fact that within
the BioMed community, citations are highly plenti-
ful and thus a corpus of bio-medical documents may
contain a wealth of citances which all reference the
same source document. Therefore, one can use these
collections of citances to help construct compara-
ble corpora or new summaries (with respect to the
sources).

3 Methods

3.1 Task 1a: Evidence Linking

This sub-task, as mentioned, is concerned with
building a model to automatically predict the most
relevant pieces of text within a cited/source docu-
ment. Specifically, for each report’s citance, from
the provided source document we may return a sen-

tence fragment, full sentence, or up to five con-
tiguous sentences – as these were the specifics that
human annotators provided during the creation of
truth/gold data, which we explain in Section 4.1.

For all of our Task 1a models, we only considered
predicting the most relevant sentences within the
cited documents – not sentence fragments – which,
per our corpus, is a reasonable choice to make, for
the human annotators did not often pick sentence
fragments as being the gold, relevant pieces of con-
tent. Further, given a report document and a con-
tained citance, we ranked each candidate sentence
within the source while only using the text from the
corresponding report document’s citance. That is,
our models did not use the full report document’s
text or other reports’ citances which cite the same
source.

Baselines:

• Jaccard: our first baseline model, for a given
citance C, ranked each candidate source sen-
tence S according to its Jaccard Similarity with
the citance, as shown in Equation 1.

• Vanilla Sum: second, we consider just the nu-
merator of Jaccard. That is, we simply rank
sentences based on the number of shared words
they have with the given citance.

• Longest Substring Match: third, each can-
didate source sentence is ranked according to
its longest number of consecutive words it pre-
cisely shares with the report’s citance. This is
similar to the other two baselines but with the
motivation that longer sequences are more in-
dicative of containing contextually relevant in-
formation.

J(C, S) =
C ∩ S

C ∪ S
(1)

Weighted Jaccard:

We experimented with two ways of weighting
the words so as to alter the Jaccard Baseline. Our
assumption was that not all words within a citance
and candidate source sentence are equal. Therefore,
we ran the Latent Dirichlet Allocation (LDA) [1]
topic model over our entire corpus in order to
construct 50 topics, each of which has its own most



topical words. Our two models are:

• Topically-Weighted per Report Document:
Akin to Jaccard Similarity, only the words
found within the report’s citance and candidate
source sentence will be used; however, instead
of each word effectively having a weight of 1,
each word is weighted per Equation 2.

• Topically-Weighted per Source Document:
Identical to the above, but we use the source
document’s topic distribution to define the im-
portance of the word – as shown in Equation 3.

word weight w =
∑
z

P (w|z)P (z|report) (2)

word weight w =
∑
z

P (w|z)P (z|source) (3)

Topic Similarity:

Additionally, we experimented with modelling
the importance of each sentence by how topically
similar it is to the corresponding citance. Namely,
we again ran LDA over our corpus (50 topics), then
each sentence (i.e., the report citance and candidate
source sentence) was assigned a topic distrubtion per
Equation 4.

P (z|sentence) =
∏

w∈sent
P (z|w) ≈

∏
w∈sent

P (w|z)P (z)∑
z′ P (w|z′)P (z′)

(4)

Our two models differed only in their metric for
comparing topic distrubtion similarity:

• KL-Divergence

• Cosine Similarity

Discriminative Approach:

We identified several features which we thought to
be useful in determining if a candidate source sen-
tence is pertinent to a given citance:

Figure 1: Document placement of golden, human anno-
tated sentences

• bag-of-word (BoW) representation encoding
both citance and candidate source sentence (1 if
word is present in both; 0 otherwise). We lim-
ited our vector’s vocabulary to the 6,000 high-
est ranking words per the aforementioned LDA
topic model.

• highest rank position of an adjacent candidate
sentence (per Vanilla Sum baseline)

• candidate sentence’s length

• candidate sentence’s placement within the
source document (0 represents 1st sentence,
N − 1 represents last sentence)

The last feature was chosen after looking at our
data and noticing there is a tendency for the golden,
human annotated sentences to be ones closer to the
top of the source documents, as shown in Figure 1.

Specifically, we used these features and per-
formed logistic regression with squared L2 regular-
ization. Our training and testing details are listed in
Section 4.1.

3.2 Task 1b: Discourse Prediction
This sub-task concerned building a model to auto-
matically categorize cited text spans in the refer-
enced paper into one of the following 5 facets: hy-
pothesis citation, method citation, results citation,
implication citation and discussion citation.

For our model, we took an ensemble approach
that exploited a bag-of-word (BoW) representation
encoding both citance and (predicted) reference text
features (more on this below). More specifically,
this ensemble included the following models: multi-
nomial logistic regression with squared L2 regular-
ization; linear kernel SVM; random forest (with 20



base learners); k-nearest neighbors and multinomial
Naive Bayes. We tuned all model hyperparameters
– including the regularization penalty for logistic re-
gression and SVM, the k parameter for k-nearest
neighbors and the smoothing parameter for Naive
Bayes – via grid-search over the training data to
maximize predictive accuracy.

Many sentences were associated with more than
one label (i.e., annotators disagreed with one an-
other). To account for this, we simply included mul-
tiple copies of each sentence: one for each label in
the corpus. Thus if a sentence was labeled once as
Hypothesis Citation and twice as Method Citation,
we would include three copies in our training dataset
with these labels. As a result, the disagreement is
implicitly accounted for during training, as mispre-
dicting sentences uniformly agreed upon would con-
tribute more to the empirical error than ‘mislabeling’
a sentence about which annotators disagreed.

Concerning features, we included all uni- and bi-
grams that occurred in at least 5 citance texts. We
did not perform stop-wording. We used term fre-
quency inverse-document frequency representation
(tf-idf).

Intuitively, we anticipated that both the text in the
citance and the relevant text in the cited document
would be predictive of the facet. Therefore, we in-
corporated features extracted from both texts, where
these are kept separate: i.e., features extracted from
citances are treated independently from those ex-
tracted from the reference texts. At train time, this is
straight-forward because the relevant reference texts
are known.

At test time, we substituted features from the
‘true’ reference texts predicted with features ex-
tracted from texts predicted by our model (from task
1a) as being most likely to correspond to the citance
under consideration. Using features from the ‘true’
reference texts improved performance substantially.
Substituting the predicted texts in still seemed to im-
prove performance, although by considerably less.
One may hypothesize that improving our model for
task 1a would likely also improve our model for 1b.

4 Experiments

4.1 Data

As mentioned, NIST sponsored the TAC 2014
Biomedical Summarization Workshop, which moti-
vated this work. As part of their effort, they provided
a rich corpus of 20 distinct source documents. Each
of these source documents has an associated 10 dis-
tinct report documents which cite the given source
(and the citance is specified). For each of these
200 pairs (20 sources, each linked by 10 distrinct
reports), 4 human annotators manually read the en-
tire source document and selected the most relevant
sentence fragment or sentence(s) – limited to 5 con-
tiguous sentences. Naturally, there was some dis-
agreement amongst annotators. On average, most
source documents had roughly 200 sentences, with
one outlier containing 624.

Additionally, the workshop also provided 30 more
source documents. Again, each of these had an asso-
ciated 10 report documents, and humans annotated
all citances. However, this set served as the test set,
so the annotations were not provided and shall be
used for shared-task’s evaluation.

In lieu of having the answers to the test set, we
evaluated our models by dividing the training set
into 2 groups: we randomly selected 16 of the
sources to serve as training and the remaining 4 for
test. For all of our experiments, this training/testing
split remained constant.

4.2 Entity Linking

Each of our models, for a given citance, returns a
ranked list of the source’s sentences. Each sentence
can be represented by the character offset within
the source document (e.g., the first sentence could
be bytes/characters 100 - 120 if the first 99 bytes
of the document were header information). Since
the human annotators were allowed to select sen-
tence fragments and not just complete sentences,
it makes sense to evaluate based on the number of
overlapping bytes between our models’ predictions
and the humans’, a la typical recall and precision
metrics. Due to the natural disagreement that oc-
curs between human annotators, the scoring met-
ric set forth by the workshop (which we also used
for our experiments) is a weighted F1 metric. For
a given citance, we define WeightedRecall(S|M)



Figure 2: Weighted Recall and Weighted Precision

and WeightedPrecision(S|M) for a model return-
ing a set of indexed bytes S, with respect to a set of
M annotations from m humans, containing indexed
bytes G1, G2, ..., Gm according to Figure 2. Then,
we define weighted F1 (wF1) per Equation 5.

wF1 = 2 ∗ WeightedRecall ∗WeightedPrec

WeightedRecall +WeightedPrec
(5)

Having trained on the 16 randomly selected
sources and tested on the remaining 4, we show our
average performance across all citances in Figure 3.
The x-axis represents the number of sentences we
return for a given source; hence, performance for the
first few indices are most important, especially since
for each source humans typically selected roughly 3
sentences as being relevant.

As shown, the Logistic Regression Discriminate
approach performs the best; however, the Vanilla-
Sum baseline performs very well and was difficult
to outperform. The “1 perform anno + random”
model represents the highest performance one could
reasonably expect, for we randomly selected a hu-
man annotator’s answers and measured performance
against the other 3 humans. Since only 3-5 sentences
were typically selected as truth data, for the remain-
ing number of sentences returned, we selected ran-
domly. The topic-modelling-based similarity mod-
els perform poorly, suggesting that the actual dis-
tinct words found within sentences and citances mat-
ter more than simply containing topically related
words.

5 Discussion

Having looked at the data, it is clear that citances
correspond to at least three different types of relevant
source sentences:

1. Keyword-based:
citance: The general impression that has
emerged is that transformation of human cells

by Ras requires the inactivation of both the
pRb and p53 pathways, typically achieved
by introducing DNA tumor virus oncopro-
teins such as SV40 large tumor antigen or
human papillomavirus E6 and E7 proteins.

1 human’s annotated source sentence:
Several viral oncoproteins also cooperate with
ras, including SV40 T-antigen, adenovirus
E1A, human papillomavirus E7, and HTLV-1
Tax ( 70 and 57). When expressed alone, most
of these cooperating alterations facilitate the
establishment of primary cells into immortal
cell lines

2. Paraphrasing & Lexicalized Reordering:
citance: Loss of TET2 is believed to cause an
aberrant methylation of promoter regions in
AML

1 human’s annotated source sentence:
TET2 loss of function would be anticipated
to result in hypermethylation, and the data
reported here support this scenario

3. Summarization & Topics:
citance: Recent analyses of
multiple different cancers have identified
gene expression differences between tumors
with similar histologic characteristics yet
heterogeneous clinical behavior

1 human’s annotated source sentence:
As shown, distinct groups of genes distinguish
cases defined by E2A-PBX1, MLL, T-ALL,
hyperdiploid >50, BCR-ABL, the novel sub-
group, and TEL-AML1. In addition to these
specific subgroups, 65 cases (20% of the total)
were identified that did not cluster into any of
the leukemia subtypes

We used topic modelling in attempt to cap-
ture keyword-based source sentences and hopefully
some of the “summarization & topics” sentences.
However, especially for the latter, it appears one
would need a model that truly incorporates a richer
model – the example citance mentioned “multiple
different cancers”; however the humans’ golden sen-
tences never mention these words. Instead, the rel-



Figure 3: Performance of all models on Task 1a

evant sentences actually list specific cancers, sug-
gesting that the citance was truly a summarized fact
which introduced new words not found in the indi-
vidual sentences. Without building more complex
models to handle these various cases, it seems rea-
sonable that our VanillaSum model could do so well,
as it is a simple approach that generally captures
common relevance.

6 Conclusion

We introduced several basic models in attempt to
find relevant sentences (aka link evidence) to a cor-
responding, provided citance. Per our preliminary
results, our descriminative logistic regression ap-
proach offered the best performance, while Vanil-
laSum (simply the number of shared words between
the citance and candidate sentence) yielded compet-
itive results.
For the discourse prediction (facet identification)
task, our ensemble classifier approach offered the
best results, yielding 52% accuracy on our held-out
evaluation data. Had we performed perfectly at the
evidence linking task, then using the predicted, rele-
vant source sentences as features can potentially in-
crease performance to as much as 62%. However,
with our current performance at evidence linking,
we were able to increase performance to just 54%
accuracy.
It is clear that richer models might be necessary for
the task of evidence linking, as citances often refer
to many different types of relevant content. Further,
it might be beneficial to use our discourse facet pre-
dictions to help the task of evidence linking – if we
are fairly certain that a citance corresponds to a ”dis-
cussion”, then our predicted sentence should likely
be from the “Discussion” section of the document.
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