Hard NLP Tasks

Determining who is who and what is what

Harvard IACS

Lecturer

Chris Tanner

- observe a glimpse into current state-of-the-art research
- understand some of the most challenging NLP tasks
- think critically about your ML approaches to solve tasks
- feel inspired to get involved with NLP

Outline

NLP Overview

Coreference Resolution
What
Why
How
 Improvements
No Data
Better Data
Conclusions

Our digital world is inundated with text. How can we leverage it for useful tasks?

Language is funny

"Red tape holds up new bridges"

"Hospitals are sued by 7 foot doctors"

"Local high school dropouts cut in half"

"Tesla crashed today"

"Obama announced that he will run again"

"Kipchoge announced that he will run again"

"She made him duck"

"Will you visit the bank across from the river bank? You can bank on it"

"Yes" vs "Yes." vs "YES" vs "YES!" vs "YAS" vs "Yea"

Language is funny (coreference)

"Maria likes May"

- "Maria likes May and Joe"
- "Maria likes May and June"
- "May likes Maria"
- "Maria hit May, then she [fell/ran]"
- "Maria and Anqi bullied May, so they got in trouble"
- "Maria and Anqi convinced May to prank the teacher, so they got in trouble"

Language is special and complex

- Distinctly human ability
- Paramount to human evolution
- Influenced by many social constructs
- Incredibly nuanced
- Language forms capture multi-dimensions
- Language evolves over time

Linguistic Structure

Discourse what is said; the process underlying language

Pragmatics how words are used to denote meaning

Semantics the true meaning

Syntax rules that govern language structure

Lexemes basic unit of language (e.g., words)

Morphology how words are formed

Characters sub-unit representations

These systems hinge upon understanding *what* you're saying (discourse) and the *meaning* of it (semantics)

Google

Google Translate

Common NLP Tasks (aka problems)

Syntax

Morphology Word Segmentation Part-of-Speech Tagging Parsing Constituency Dependency

Discourse

Summarization Coreference Resolution

Semantics

Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Common NLP Tasks (aka problems)

Syntax

Morphology Word Segmentation Part-of-Speech Tagging Parsing Constituency Dependency

Discourse

Summarization

Coreference Resolution

Semantics

Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

NLP Overview

Coreference Resolution
What
Why
How
 Improvements
No Data
Better Data
Conclusions

Outline

NLP Overview
Coreference Resolution
What
Why
How
Improvements
No Data
Better Data
Conclusions

NLP Overview

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The New York Times

By Serge Schmemann April 1, 2021

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The New York Times

by <u>Serge Schmemann</u> April 1, 2021

Coreference Resolution

The task of determining which words all refer

to the same underlying real-world *thing*

succeeded could not, bargeout of

Opinion

The Freeing of the Ever Given

The stuck container ship became the butt of online jokes, but it was no minor crisis.

wedged six days earlier. A spring tide finally set the **Ever Given** and **its** enormous stack of 18,300 shipping containers afloat again, drawing cheers from **Egyptians** on the shore

The New York Times

by <u>Serge Schmemann</u> April 1, 2021

Coreference Resolution

The task of determining which words all refer

to the same underlying real-world *thing*

edged six days earlier. A spring tide

finally set the Ever Given and it

EASY FOR HUMANS

The stuck container ship became the butt of online jokes, but it vas no minor crisis.

nd a virtual world beyond.

State-of-the-art

neural model?

End-to-end Neural Coreference Resolution. Lee et al. 2017

Opinion The Freeing of the Ever Given

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The New York Times

By Serge Schmemann April 1, 2021

State-of-the-art

neural model?

End-to-end Neural Coreference Resolution. Lee et al. 2017

Opinion The Freeing of the Ever Given

The stuck container ship became the butt of online jokes, but it was no minor crisis.

The New York Times

by <u>Serge Schmemann</u> April 1, 2021

In the end, a full moon succeeded

HARD FOR the machines could not, machines could not, mammoth barge out of

the Egyptian mud in which it became COMPUTERS days earlier. A spring tide

The Freeing of the Ever Given

The stuck container ship became the butt of online jokes, but it was no minor crisis.

enormous stack of 18,300 shipping containers afloat again, drawing cheers from Egyptians on the shore and a virtual world beyond. Good models should be able to perform coreference resolution across multiple documents
The New York Times

By Serge Schmemann April 1, 2021

By SAMY MAGDY and JON GAMBRELL March 30, 2021

In the end, a full moon succeeded where puny machines could not, wrenching the mammoth barge out of the Egyptian mud in which it became wedged six days earlier. A spring tide finally set the Ever Given and its stack of 18,300 shipping enormous containers afloat again, drawing cheers from Egyptians on the shore and a virtual world beyond.

SUEZ, Egypt (AP) — Experts boarded the massive container ship Tuesday that had blocked Egypt's vital Suez Canal and disrupted global trade for nearly a week, seeking answers to a single question that could have billions of dollars in legal repercussions: What went wrong?

And handle events

The New York Times AP

NLP Overview

NLP Overview

Motivation

Coreference resolution allows one to better understand what is going on (i.e., who is who and what is what)

Helps with other NLP tasks:

- Information extraction/retrieval
- Question Answering
- Document Summarization

"TL;DR crypto stocks are surging"

Event coreference for information extraction. Humphreys et al., 1997 Question answering based on semantic structures. Narayanan and Harabagiu, 2004 Sub-event based multi-document summarization. Daniel et al., 2003

NLP Overview

How do all coref systems work?

Determines which spans of words constitute a mention

In the end, a full moon succeeded where puny machines could not, wrenching the mammoth barge out of the Egyptian mud in which it became wedged six days earlier. A spring tide finally set the Ever Given and its enormous stack of 18,300 shipping containers afloat again, drawing cheers from Egyptians on the shore and a virtual world beyond.

Determines which spans of words constitute a mention

In the end, a full moon succeeded where puny machines could not, wrenching the mammoth barge out of the Egyptian mud in which it became wedged six days earlier. A spring tide finally set the Ever Given and its enormous stack of 18,300 shipping containers afloat again, drawing cheers from Egyptians on the shore and a virtual world beyond.

Determines which spans of words constitute a mention

In the end, a full moon succeeded where puny machines could not, wrenching the mammoth barge out of the Egyptian mud in which it became wedged six days earlier. A spring tide finally set the Ever Given and its enormous stack of 18,300 shipping containers afloat again, drawing cheers from Egyptians on the shore and a virtual world beyond.

entities + events

Calculates a coref probability for all pairs of mentions

Uses the coref probabilities to determine clusters

Uses the coref probabilities to determine clusters

Early research demonstrated highly-effective **rule-based entity** coref systems

CoNLL F1: 58.3

Ordered sieves

- 1. Mention Detection Sieve
- 2. Discourse Processing Sieve
- 3. Exact String Match Sieve
- 4. Relaxed String Match Sieve
- 5. Precise Constructs Sieve (e.g., appositives)
- 6-8. Strict Head Matching Sieves A-C
- 9. Proper Head Word Match Sieve
- 10. Alias Sieve
- 11. Relaxed Head Matching Sieve
- 12. Lexical Chain Sieve
- 13. Pronouns Sieve

Table 1: The sieves in our system; sieves new to this paper are in bold.

A Multi-Pass Sieve for Coreference Resolution. Raghunathan et al. EMNLP 2010

Stanford's Multi-Pass Sieve Coreference Resolution System. Lee et al. CoNLL 2011

Rule 1: cluster together all entity mentions that are identical

The Ever Given cargo ship has been stuck for the past six days. While reports of Ever Given started to ...

A Multi-Pass Sieve for Coreference Resolution. Raghunathan et al. EMNLP 2010

Stanford's Multi-Pass Sieve Coreference Resolution System. Lee et al. CoNLL 2011

Rule 10: cluster together all entity mentions that are aliases according to Wikipedia

Donald Glover, better known as Childish Gambino, has written and produced an incredible TV series titled Atlanta.

A Multi-Pass Sieve for Coreference Resolution. Raghunathan et al. EMNLP 2010

Stanford's Multi-Pass Sieve Coreference Resolution System. Lee et al. CoNLL 2011

Glover at the premiere of *The Martian* in September 2015

Born

Other names

Donald McKinley Glover Jr. September 25, 1983 (age 37) Edwards Air Force Base, Edwards, California, U.S. Childish Gambino • mcDJ

Entity Coreference (2011 – present)

Then, many systems threw tons of manually-defined features into their models

CoNLL F1: 65.3

Narrowing the Modeling Gap: A Cluster-Ranking Approach to Coreference Resolution. Rahman and Ng. JAIR 2011

Improving Coreference Resolution by Learning Entity-Level Distributed Representations. Clark and Manning. ACL 2016

	Feat	tures describing m_j ,	, a candidate ant	ecedent		
	1 PRONOUN_1 Y if m _j is a pronour			un; else N		
	2	SUBJECT_1	Y if m_j is a subject	ct; else N		
•	3	NESTED_1	Y if m_j is a nested	I NP; else N		
	Feat	tures describing m_k	, the mention to			
	4 5	NUMBER_2 CENDER 2	SINGULAR OF PLU	Additional Mention Featur	<i>res</i> : The type of the	
	9	GENDER_Z	common first non			
	6	PRONOUN_2	Y if m_k is a prop	mention (pronoun, nomina	l, proper, or list), the	
	7	NESTED_2	Y if m_k is a profit			
	8	SEMCLASS_2	the semantic class	mention's position (index o	of the mention divided	
			NIZATION, DATE,	has the manufact of manufact	and in the descense (
			mined using Word	by the number of mention	ns in the document),	
			nizer (Finkel, Gre	whather the mentions is son	tained in another man	
	9	ANIMACY_2	Y if m_k is determined	whether the mentions is con	tained in another men-	
			recognizer; else N	tion and the length of the m	antion in words	
	10	pro_type_2	the nominative c	tion, and the length of the h	lenuon m words.	
	-		feature value for a			
	Feat	tures describing the	e relationship be			
	the	mention to be reso	Cif the mentions	Document Genre: The genre	e of the mention's doc-	
	11	HEAD_MATCH	C if the mentions	umant (broadcast nouse nou	(arrite web data ata)	
	13	SUBSTR MATCH	C if one mention	unient (broadcast news, new	/swite, web data, etc.).	
	14	PRO_STR_MATCH	C if both mention			
	15	PN_STR_MATCH	C if both mention	Distance Eastern The dist		
	16	NONPRO_STR_MATCH	C if the two men	Distance Features: The dista	ance between the men-	
			string; else I	tions in contaneos, the dista	nee between the men	
	17	MODIFIER_MATCH	C if the mentions	tions in sentences, the dista	nce between the men-	
			don't have a mod	tions in intervening mention	ons and whether the	
	18	PRO_TYPE_MATCH	C if both mention	tions in intervening mentio	ons, and whether the	
			or different only v	mentions overlap		
	10	NUMBER	not pronominal; e	mentions overlap.		
	19	NUMBER	c if the mention			
	20	GENDER	C if the mentions	Speaker Features: Whether	the mentions have the	
	20	GLADER	for one or both m	speaker reatures. whether	the mentions have the	
	21	AGREEMENT	C if the mentions	same speaker and whether or	ne mention is the other	
			in both number a	same speaker and whether of	ne mendon is the other	
	22	ANIMACY	C if the mention	mention's speaker as detern	nined by string match-	
			animacy for one o	mention s speaker as actern	inica of string materi	
	23	BOTH_PRONOUNS	C if both mentior	ing rules from Raghunathan	et al. (2010).	
	24	BOTH_PROPER_NOUNS	sC if both mention	0	()	
	or		eise NA Clifthe troopert			
	25	MAXIMALNP	tion: else I	String Matching Features	Head match, exact	
	26	SPAN	C if neither menti	String Indiciting I cultures.	fieud maten, exact	
	27	INDEFINITE	C if $m_{\rm L}$ is an inde	string match, and partial stri	ing match.	
			else I	pur tur bur		
	28	APPOSITIVE	C if the mentions			
	29	COPULAR	C if the mentions	are in a copular construction; else I	66	

66

Entity Coreference (201

Then, n

tons of features

erence (2011 – present)	Features describing m 1 PRONOUN_1 2 SUBJECT_1 3 NESTED_1 Features describing m 4 NUMBER_2	i_j , a candidate anteced Y if m_j is a pronoun; e Y if m_j is a subject; els Y if m_j is a nested NP i_k , the mention to SINGULAR or PLU	lent else N se N ?; else N	Mantion	Eastures	The type of t
Takeaway #2	5 GENDER_2	MALE, FEMALE, P common first nan	antion (n	Mention	reatures:	Ine type of the operation of the operati
Research has largely relied on ML models w/					ntion's do data, etc	
Strong results b	ut clear l	imitatio	ons.			en the me n the me /hether ti

BOTH_PRONOUNS	

same speaker and whether one mention is the other mention's speaker as determined by string matching rules from Raghunathan et al. (2010).

String Matching Features: Head match, exact

67

ECB+ corpus has 982 short documents

Actress Lindsay Lohan finally checked

into court-mandated rehab at the Betty Ford Center late Thursday.

Lindsay Lohan checked into the Betty Ford Clinic in Rancho Mirage, California on Thursday night, for what is to be a three-month stay, her rep confirms to People.

SameLemma: if two mentions have the same lemma (base form), classify them as being coref!

Original word	Lemmatization		
running	run		
ran	run		

This shouldn't work so well, but it does.

Novel deep learning approaches used very few features

Event Coreference Resolution by Iteratively Unfolding Inter-dependencies among Events. Choubey and Huang. EMNLP 2017. Cross-Document Coreference Resolution for Entities and Events. Tanner. Brown University Dissertation. 2019 Key insight: use contextualized word embeddings to automatically learn feature representations

The Ever Given was finally freed after becoming wedged six days prior. While it was stuck, corporations lost an estimated \$1.2 billion in commerce.

Cross-Document Coreference Resolution for Entities and Events. Tanner. Brown University Dissertation. 2019

Siamese Conjoined CNN w/ Contrastive Loss

Cross-Document Coreference Resolution for Entities and Events. Tanner. Brown University Dissertation. 2019
Event Coreference (2017 – 2019)

	Within-Document			Cross-Document				
	MUC B ³ CEAF CoNLL F1		MUC	\mathbf{B}^3	CEAF	CoNLL F1		
SameLemma _{any}	40.4	66.4	66.2	57.7	66.7	51.4	46.2	54.8
HDDCRP [108]	53.4	75.4	71.7	66.8	73.1	53.5	49.5	58.7
Choubey [20]	62.6	72.4	71.8	68.9	73.4	61.0	56.5	63.6
FFNN+AGG	61.6	73.6	69.1	68.1 (0.14)	74.8	55.3	60.2	63.4 (0.21)
FFNN+NC	62.5	73.2	70.8	68.8 (0.17)	76.1	56.0	60.4	64.2 (0.18)
CCNN+AGG	65.2	74.2	69.0	69.5 (0.16)	75.8	55.8	62.7	64.8 (0.21)
CCNN+NC	67.3	73.3	69.6	70.1 (0.20)	77.2	56.3	62.0	65.2 (0.22)
CCNN+NC (ensemble)	67.7	73.6	69.8	70.4 (0.13)	78.1	56.6	62.1	65.6 (0.17)

Table 4.6: Coreference Systems' clustering performance on the ECB+ test set, using the predicted mentions and testing procedure from Choubey and Huang [20]. Our CCNN models use only the Lemma + Character Embedding features. FFNN denotes a Feed-Forward Neural Network Mention-Pair model. AGG denotes Agglomerative Clustering. Our models' scores represent the average from 50 runs, with standard deviation denoted by ().

Event Coreference (2019)

False Positive

- Sony announced today ...
- Friday, Obama announced ...

False Negatives

The casting of Smith ...

Smith stepped into the role ...

Smith was handed the keys to play ...

False Negative

Two of the bombs fell within the Yida Camp, including ...

The UN Refugee Agency on Friday strongly condemned the aerial bombing of ...

FINDINGS

- state-of-the-art for event coref
- Character Embeddings + Lemma Embeddings were the only two necessary features

Cross-Document Coreference Resolution for Entities and Events. Tanner. Brown University Dissertation. 2019

Takeaway #3 The community needs a **better corpus**.

Takeaway #4Event coref is especially hard, but using
deep learning w/ contextualized
representations works well.

Cross-Document Coreference Resolution for Entities and Events. Tanner. Brown University Dissertation. 2019

First end-to-end neural system

First end-to-end neural system

End-to-end Neural Coreference Resolution. Lee et al. EMNLP 2017.

First end-to-end neural system

Uses several important features

	Avg. F1	Δ
Our model (ensemble)	69.0	+1.3
Our model (single)	67.7	
- distance and width features	63.9	-3.8
 GloVe embeddings 	65.3	-2.4
- speaker and genre metadata	66.3	-1.4
 head-finding attention 	66.4	-1.3
 – character CNN 	66.8	-0.9
 Turian embeddings 	66.9	-0.8

Entity Coreference (2019 - present)

REMAINING ISSUES

- Pronouns (especially in conversation)
- Conflating relatedness with equality (e.g., "*Flight attendants*" with "*pilots*")
- World-knowledge

Also such location devices, (**some ships**) have smoke floats (**they**) can toss out so the man overboard will be able to use smoke signals as a way of trying to, let the rescuer locate (**them**).

• Mention paraphrasing (e.g., "Royals" with "Prince Charles and his wife Camilla") BERT is incredible, can we use it for coreference resolution?

First end-to-end neural system

End-to-end Neural Coreference Resolution. Lee et al. EMNLP 2017.

BERT Improvements

BERT for Coreference Resolution: Baselines and Analysis. Joshi et al. EMNLP 2019.

Discourse
Pragmatics
Semantics
Syntax
Lexemes
Morphology
Characters

Research has demonstrated that **BERT** can capture many complex linguistic properties.

However, coref is still far from solved

What Does BERT Look At? An Analysis of BERT's Attention. Clark et al. ACL 2019.What does BERT learn about the structure of language? Jawahar et al. ACL 2019.BERT Rediscovers the Classical NLP Pipeline. Tenney et al. ACL 2019BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Devlin et al. NAACL 2019.

However, coref is still far from solved

Category	Snippet	#base	#large
Related Entities	Watch spectacular performances by dolphins and sea lions at the Ocean Theater It seems the North Pole and the Marine Life Center will also be renovated.	12	7
Lexical	Over the past 28 years , the Ocean Park has basically The entire park has been	15	9
Pronouns	In the meantime, our children need an education. That's all we're asking.	17	13
Mention Paraphrasing	And in case you missed it <i>the Royals</i> are here. Today Britain's Prince Charles and his wife Camilla	14	12
Conversation	(Priscilla:) My mother was Thelma Wahl . She was ninety years old (Keith:) Priscilla Scott is mourning . Her mother Thelma Wahl was a resident	18	16
Misc.	He is my, She is my Goddess, ah	17	17
Total		93	74

Table 3: Qualitative Analysis: #base and #large refers to the number of cluster-level errors on a subset of the OntoNotes English development set. <u>Underlined</u> and **bold-faced** mentions respectively indicate incorrect and missing assignments to *italicized* mentions/clusters. The miscellaneous category refers to other errors including (reasonable) predictions that are either missing from the gold data or violate annotation guidelines.

However, coref is still far from solved

Category Related Entities	Takeaway #5	Neural pre-trained text encoders (e.g., BERT) capture rich information			
Lexical		but miss nuanced cases		9	
Pronouns				.3	
Mention Paraphrasing	And in case you missed Today Britain's Prince (it <i>the Royals</i> are here. Charles and his wife Camilla	14	12	
Conversation	(Priscilla:) My mother w (Keith:) <i>Priscilla Scott</i> i	vas Thelma Wahl . She was ninety years old s mourning . <i>Her</i> mother Thelma Wahl was a resident	18	16	
Misc.	He is my, She is my Go	ddess, ah	17	17	
Total			93	74	

Table 3: Qualitative Analysis: #base and #large refers to the number of cluster-level errors on a subset of the OntoNotes English development set. <u>Underlined</u> and **bold-faced** mentions respectively indicate incorrect and missing assignments to *italicized* mentions/clusters. The miscellaneous category refers to other errors including (reasonable) predictions that are either missing from the gold data or violate annotation guidelines.

However, coref is still far from solved

Category Related Entities	Takeaway #5	Neural pre-trained text encoders (e.g., BERT) capture rich information	urge 7
Lexical		but miss nuanced cases	9
Pronouns			.3
Mention Paraphrasin	And in case you missed	it <i>the Royals</i> are here. 14	12
Conversa	Takeaway #6	Until we have better data, <mark>we don't</mark>	.6
Misc.		fully understand the capabilities of	.7
Total		our existing systems, nor do we know	74
Table 3: Qu		what is possible.	t of t

Performance is reaching an asymptote.

Instead of hammering away on a problem and throwing complex models at it, pay close attention to:

- 1. What you're trying to model (i.e., your data)
- How you're framing the problem
 (e.g., a clustering task via pairwise predictions)

Outline

Outline

Since labelled data is lacking, can we build a powerful unsupervised model?

We combine the old school, manual rule-based system

Ordered sieves

- 1. Mention Detection Sieve
- 2. Discourse Processing Sieve
- 3. Exact String Match Sieve
- 4. Relaxed String Match Sieve
- 5. Precise Constructs Sieve (e.g., appositives)
- 6-8. Strict Head Matching Sieves A-C
- 9. Proper Head Word Match Sieve
- 10. Alias Sieve
- 11. Relaxed Head Matching Sieve
- 12. Lexical Chain Sieve
- 13. Pronouns Sieve

with the SOTA BERTbased end-to-end model

We combine the old school, manual rule-based system

with the SOTA BERTbased end-to-end model

We combine the old school, manual rule-based system

(doesn't need training data)

Ordered sieves

1. Mention Detection Sieve 2. Discourse Processing Sieve 3. Exact String Match Sieve Span r 4. Relaxed String Match Sieve Span he 5. Precise Constructs Sieve (e.g., appositives) 6-8. Strict Head Matching Sieves A-C 9. Proper Head Word Match Sieve Alias Sieve 11. Relaxed Head Matching Sieve Word 12. Lexical Chain Sieve 13. Pronouns Sieve Unsupervised

with the SOTA BERTbased end-to-end model

Unsupervised Coreference Resolution with Contextualized Representations and Linguistic Prior Knowledge. Alessandro Stolfo et al. In preparation.

Training with **noisy (imperfect) rule-based labels** would limit our **BERT** model to perform no better than the rule-based system

Training with **noisy (imperfect) rule-based labels** would limit our **BERT** model to perform no better than the rule-based system

Our combined **BERT** model successfully uses *distant-supervision* to outperform the rule-based system

Unsupervised Coreference Resolution with Contextualized Representations and Linguistic Prior Knowledge. Alessandro Stolfo et al. In preparation.

Unsupervised Coreference Resolution with Contextualized Representations and Linguistic Prior Knowledge. Alessandro Stolfo et al. In preparation.

Coreference Type	Name	# Docs	
events	ECB+	982	
entities	OntoNotes	3,493	

How can we create the biggest, best coreference dataset for <mark>entity and events</mark>?

Outline

Outline

We're building an annotation tool that allows users to:

- collaborate with others
- run remotely on humbleNLP.com (coming soon)
- get started with many state-of-the-art models
- quickly annotate cross-document coref via entity linking
- have different permissions (e.g., annotator, approver, admin)

Lindsay Lohan Leaves Betty Ford , Checks Into Malibu Rehab

First Published : June 13 , 2013 4 : 59 PM EDT Lindsay

Lohan has left the Betty Ford Center and is moving to a

rehab facility in Malibu , Calif . , Access Hollywood has

confirmed . A spokesperson for The Los Angeles Superior

Court confirmed to Access that a judge signed an order

yesterday allowing the transfer to Cliffside

Suggest Mentions				
igodot	SpanBERT			
0	SpaCy			
An	notate Mentions			
0	SpanBERT			
0	SpaCy			
Sho	w part-of-speech			
0	All			
0	Noun			
0	Verb			
0	Pronoun			

	Suggest Mentions
Lindsay Lohan Leaves Betty Ford, Checks Into Malibu Rehab	SpanBERT
First Published : June 13 , 2013 4 : 59 PM EDT Lindsay	О ЅраСу
Lohan has left the Betty Ford Center and is moving to a	Annotate Mentions
	O SpanBERT
renab facility in Wallbu , Callt . , Access Hollywood has	SpaCy
confirmed . A spokesperson for The Los Angeles Superior	Show part-of-speech
Court confirmed to Access that a judge signed an order	O All
	O Noun
yesterday allowing the transfer to Cliffside	O Verb
	O Pronoun

Outline

Outline

Takeaway #1

Coreference resolution determines which mentions all refer to the same underlying **entity** or **event**, and is ultimately a <u>clustering task</u>.

Takeaway #2

Research has largely relied on ML models w/ many manuallydefined features. Strong results but clear limitations.

Takeaway #3

The community needs a **better corpus**.

Takeaway #4

Event coref is especially hard, but using deep learning w/ contextualized representations works well.

Takeaway #5

Neural pre-trained text encoders (e.g., **BERT**) capture rich information but miss nuanced cases

Takeaway #6

Until we have better data, **we don't fully understand the capabilities of our existing systems,** or know what's possible.

Coreference Resolution has had many exciting advances in the last 10 years, but it's far from solved and remains one of the most challenging and exciting NLP tasks.

Current Students

Efficient Active Learning for Entity-based Annotation

Automated Captioning for Data Visualizations

Xin Zeng IACS MS Thesis

Anita Mahinpei

Commonsense Adversarial NLP

Jack Scudder

Joint Entity and Event Coreference

Xin Zeng IACS MS Thesis

Joint Entity and Event Coreference

Ning Hua Smith College x Harvard Independent Study

End-to-End Entity Linking

Mingyue Wei IACS MS Thesis

Unsupervised Coreference Resolution

Alessandro Stolfo ETH-Zurich MS Thesis Co-advised by Mrinmaya Sachan

Grammar Correction and Language Learning

Yoel Zweig ETH-Zurich MS Thesis Co-advised by Mrinmaya Sachan

Sign Language Classification for Novice Learners

Thomas Fouts Brunswick High School Awaiting Decisions

Current Students (continued)

Coreference with Commonsense

Xavier Evans

Harvard Independent Study **Current Collaborators**

Annotation tools for Coreference Resolution

Shivas Jayaram Harvard DCE Graduate

Eduardo Peynetti Harvard DCE Student

Joe Brucker @ self-employed

Data Augmentation for Neural Models

Mingyue Wei IACS MS Qiang Fei IACS Graduate Shuyuan Xiao IACS Graduate Yingsi Jian IACS Graduate Shahab Asoodeh Harvard Physics Post-doc Ekin Dogus Cubuk Google Gene Prediction with Language Modelling

Benjamin Levy IACS Graduate

Zihao Xu IACS Graduate

Liyang Zhao IACS Graduate

Shuying Ni IACS Graduate

Phoebe Wong IACS Graduate

Ross Altman Inari

Karl Kremling Inari

Thanks!

Questions?

BACK-UP SLIDES

More examples of why Event coref is hard

Wide-reading

The attack took place yesterday

The bombing killed four people

Paraphrase

She gave him the book He was given the book by her

It was destroyed

The destruction of the town ...

Event Coreference (2019)

Total # of Mention-Pairs to test: 8,669 # False Positives: 86 # False Negatives: 569

False PositivesFalse Negativessemantics — 82%semantics — 42%context-dependent (30%)unclear — 20%similar meanings (38%)slang — 16%wide-reading (14%)longer names — 14%unclear — 13%pronouns — 8%syntax — 3%semantics — 3%

too difficult for me - 2%

Cross-Document Coreference Resolution for Entities and Events. Tanner. Brown University Dissertation. 2019

False Negatives

Event Coreference (2019)

False Positives

	False Positives							
	Context-Dependent (30%)							
	The 55-year-old Scottish actor will replace Matt Smith, who announced							
Example 1	in June that he was leaving the sci-fi show later this year.							
	Peter Capaldi has been announced as the new Doctor Who, the 12th actor to							
	take up the coveted TV role.							
	Similar Meanings (38%)							
Example 2	Frederick C. Larue, a top Nixon campaign official who passed money from a							
Example 2	secret White House fund, died Saturday at a hotel in Biloxi, Miss.							
	Wide-Reading (14%)							
Example 3	Peyton manning helped inspire the Indianapolis Colts to their eighth straight							
Example 5	win as they overcame Jacksonville this season.							
	Unclear (13%)							
	Microsoft today issued an emergency update to plug a critical security							
Example 4	hole present in all version of its browser, a flaw hackers have used to steal							
	data from millions of Windows users.							
	Syntax (3%)							
	Creighton defeats Drake 65-53 in MVC tournament.							
Example 5	In Saturday's semi-finals, Creighton will play no. 5 seed Indiana state, which							
	defeated Evansville 51-50 on Friday.							
	Too Difficult for Me (2%)							
	Submarine cable problem disrupts telecom services in Alexandria.							
Example 6	Vodafone has been affected by a damage in one of the fiber cables going							
	from the Ramsis Communication Center all the way to Sadat City.							

Table 4.4: Examples of CCNN's False Positives from the ECB+ Development Set, grouped by categories of errors.

Event Coreference (2019)

False Negatives

	False Negatives							
	Semantics (42%)							
Example 1	Hansbrough scored 20 points Thursday night, breaking North Carolina's							
	career scoring record, and the tar heels beat visiting Evansville, 91-73 .							
	Hansbrough sets scoring record in victory .							
	Unclear (20%)							
	Hewlett-Packard's purchase of electronic data systems could mean							
Example 2	tougher competition for IBM and its 10,500 triangle employees.							
Example 2	The all-cash deal, announced Tuesday, represents HP's biggest gamble							
	under the leadership of Mark Hurd.							
Colloquial Variations (16%)								
	Industry experts told The Times that two sub-sea cables went down just							
Example 3	off Alexandra, causing mass disruption.							
Example 5	Millions of people across the Middle East and Asia have lost access to the							
	Internet after two undersea cables in the Mediterranean suffered severe damage.							
	Longer Names (14%)							
	An earthquake with a preliminary magnitude of 4.6 was recorded in the North							
Example 4	Bay this morning, according to the U.S. Geological Survey.							
	A 4.6-magnitude earthquake was recorded near Healdsburg .							
	Pronouns (8%)							
	President Obama announces nominee for surgeon general.							
Example 5	Today, President Barack Obama announced his intent to nominate Regina M.							
_	Benjamin as surgeon general, department of health and human services.							

Table 4.5: Examples of CCNN's False Negatives from the ECB+ Development Set, grouped by categories of errors.

Stanford Multi-pass sieves

Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, Dan Jurafsky

	C	mpor	ents			MUC			B^3			CEAFE			BLANC	2	
ER	D	S	GA	GM	R	Р	F1	R	Р	F1	R	Р	F1	R	Р	F1	avg F1
					58.8	56.5	57.6	68.0	68.7	68.4	44.8	47.1	45.9	68.8	73.5	70.9	57.3
	\checkmark				59.1	57.5	58.3	69.2	71.0	70.1	46.5	48.1	47.3	72.2	78.1	74.8	58.6
\checkmark	\checkmark				60.1	59.5	59.8	69.5	71.9	70.7	46.5	47.1	46.8	73.8	78.6	76.0	59.1
\checkmark	\checkmark	\checkmark			60.3	58.5	59.4	69.9	71.1	70.5	45.6	47.3	46.4	73.9	78.2	75.8	58.8
	\checkmark		\checkmark		63.8	61.5	62.7	71.4	72.3	71.9	47.1	49.5	48.3	75.6	79.6	77.5	61.0
\checkmark	\checkmark			\checkmark	73.6	90.0	81.0	69.8	89.2	78.3	79.4	52.5	63.2	79.1	89.2	83.2	74.2
\checkmark	\checkmark		\checkmark	\checkmark	74.0	90.1	81.3	70.2	89.3	78.6	79.7	53.1	63.7	79.5	89.6	83.6	74.5

Table 3: Comparison between various configurations of our system. ER, D, S stand for External Resources, Discourse, and Semantics sieves. GA and GM stand for Gold Annotations, and Gold Mentions. The top part of the table shows results using only predicted annotations and mentions, whereas the bottom part shows results of experiments with gold information. Avg F1 is the arithmetic mean of MUC, B³, and CEAFE. We used the development partition for these experiments.

			MUC			B^3			CEAFE			BLANC		
Track	Gold Mention Boundaries	R	Р	F1	R	Р	F1	R	Р	F1	R	Р	F1	avg F1
Close	Not Gold	61.8	57.5	59.6	68.4	68.2	68.3	43.4	47.8	45.5	70.6	76.2	73.0	57.8
Open	Not Gold	62.8	59.3	61.0	68.9	69.0	68.9	43.3	46.8	45.0	71.9	76.6	74.0	58.3
Close	Gold	65.9	62.1	63.9	69.5	70.6	70.0	46.3	50.5	48.3	72.0	78.6	74.8	60.7
Open	Gold	66.9	63.9	65.4	70.1	71.5	70.8	46.3	49.6	47.9	73.4	79.0	75.8	61.4

Table 4: Results on the official test set.

Closed ¹Only the provided data can be used, i.e., WordNet and gender gazetteer.

Open

²Any external knowledge source can be used. We used additional animacy, gender, demonym, and country and states gazetteers.

Clark and Manning

Improving Coreference Resolution by Learning Entity-Level Distributed Representations

	MUC				B^3			$CEAF_{\phi_4}$						
	Prec.	Rec.	F_1	Prec.	Rec.	F_1	Prec.	Rec.	F_1	Avg. F1				
CoNLL 2012 English Test Data														
Clark and Manning (2015) Peng et al. (2015)	76.12	69.38	72.59 72.22	65.64	56.01	60.44 60.50	59.44	52.98	56.02 56.37	63.02 63.03				
Wiseman et al. (2015) Wiseman et al. (2016)	76.23	69.31 69.75	72.60 73.42	66.07 66.83	55.83 56.95	60.52 61.50	59.41 62.14	54.88 53.85	57.05 57.70	63.39 64.21				
NN Mention Ranker NN Cluster Ranker	79.77 78.93	69.10 69.75	74.05 74.06	69.68 70.08	56.37 56.98	62.32 62.86	63.02 62.48	53.59 55.82	57.92 58.96	64.76 65.29				
CoNLL 2012 Chinese Test Data														
Chen & Ng (2012) Björkelund & Kuhn (2014)	64.69 69.39	59.92 62.57	62.21 65.80	60.26 61.64	51.76 53.87	55.69 57.49	51.61 59.33	58.84 54.65	54.99 56.89	57.63 60.06				
NN Mention Ranker NN Cluster Ranker	72.53 73.85	65.72 65.42	68.96 69.38	65.49 67.53	56.87 56.41	60.88 61.47	61.93 62.84	57.11 57.62	59.42 60.12	63.09 63.66				

Table 5: Comparison with the current state-of-the-art approaches on the CoNLL 2012 test sets. NN Mention Ranker and NN Cluster Ranker are contributions of this work.

End-to-end Neural Coreference Resolution

Kenton Lee⁺ , Luheng He⁺ , Mike Lewis[‡] , and Luke Zettlemoyer⁺*

		MUG	2		\mathbf{B}^3			$CEAF_{\phi_4}$			
	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.	F1	Avg. F1	
Our model (ensemble)	81.2	73.6	77.2	72.3	61.7	66.6	65.2	60.2	62.6	68.8	
Our model (single)	78.4	73.4	75.8	68.6	61.8	65.0	62.7	59.0	60.8	67.2	
Clark and Manning (2016a)	79.2	70.4	74.6	69.9	58.0	63.4	63.5	55.5	59.2	65.7	
Clark and Manning (2016b)	79.9	69.3	74.2	71.0	56.5	63.0	63.8	54.3	58.7	65.3	
Wiseman et al. (2016)	77.5	69.8	73.4	66.8	57.0	61.5	62.1	53.9	57.7	64.2	
Wiseman et al. (2015)	76.2	69.3	72.6	66.2	55.8	60.5	59.4	54.9	57.1	63.4	
Clark and Manning (2015)	76.1	69.4	72.6	65.6	56.0	60.4	59.4	53.0	56.0	63.0	
Martschat and Strube (2015)	76.7	68.1	72.2	66.1	54.2	59.6	59.5	52.3	55.7	62.5	
Durrett and Klein (2014)	72.6	69.9	71.2	61.2	56.4	58.7	56.2	54.2	55.2	61.7	
Björkelund and Kuhn (2014)	74.3	67.5	70.7	62.7	55.0	58.6	59.4	52.3	55.6	61.6	
Durrett and Klein (2013)	72.9	65.9	69.2	63.6	52.5	57.5	54.3	54.4	54.3	60.3	

Table 1: Results on the test set on the English data from the CoNLL-2012 shared task. The final column (Avg. F1) is the main evaluation metric, computed by averaging the F1 of MUC, B³, and CEAF_{ϕ_4}. We improve state-of-the-art performance by 1.5 F1 for the single model and by 3.1 F1.

		MUC				B^3					
		Р	R	F1	Р	R	F1	Р	R	F1	Avg. F1
SpanBERI	Prev. SotA: (Lee et al., 2018)	81.4	79.5	80.4	72.2	69.5	70.8	68.2	67.1	67.6	73.0
Mandar Joshi, Danqi Chen,	Google BERT	84.9	82.5	83.7	76.7	74.2	75.4	74.6	70.1	72.3	77.1
Yinhan Liu, Daniel S. Weld, Luke	Our BERT	85.1	83.5	84.3	77.3	75.5	76.4	75.0	71.9	73.9	78.3
Zettlemoyer, Omer Levy	Our BERT-1seq	85.5	84.1	84.8	77.8	76.7	77.2	75.3	73.5	74.4	78.8
	SpanBERT	85.8	84.8	85.3	78.3	77.9	78.1	76.4	74.2	75.3	79.6

Table 3: Performance on the OntoNotes coreference resolution benchmark. The main evaluation is the average F1 of three metrics: MUC, B^3 , and $CEAF_{\phi_4}$ on the test set.