
Having been introduced to a myriad of approaches that are
used for natural language processing, we were to embark on
the task of understanding a short paragraph titled Dashed

Hopes. (For purposes of being self-contained, the story fol-
lows at the end of this section). As apparent, Dashed Hopes

is a rather simple, toy story that heavily contains sequential
actions in the basic form of simple and compound sentences.
Moreover, the story is entirely in the form of active voice,
which serves as another convenience for making our job
slightly easier. Nevertheless, as we started this project, we
had only briefly been exposed to the many elements that we
may need to include within our developed software. Specif-
ically, we knew that it would be ideal to include semantic
and episodic memory, usage of scripts, goals, reasoning, uni-
fication, forward-chaining, a way of generating conceptual
dependencies (CD), and English generation.

We were made aware of the benefits of using various types
of programming languages. For example, LISP would be
convenient for its natural way of handling unification, and
PROLOG for its representation of facts. Yet, we clearly
wanted to make our job more challenging by choosing an
object-oriented language–JAVA–for developing our system.
Our main motivation behind this is that we (1) have much
more experience using it than any other language; (2) we felt
that there was much more to the project than unification
and representation of facts, and that treating everything as
an object with attributes would be useful.

Once we decided on using JAVA, we decided on a rough
outline of our system’s design. It was clear that we needed
some way to transform these initial words into slightly more
meaningful groups of text–a lexicon. So, we were to create a
LexiconAnalyzer that would serve as the pre-processor of
our story, and would perform other tasks that are outlined
in Section 2.

Next, with these slightly meaningful lexicons, we could then

Figure 1: Design of System

start to analyze the format and obtain meaning of these lex-
icons by fitting them to various patterns and rules. More-
over, we could further resolve implied details of the story by
matching our formed sentences against scripts–a succinct
item-list of events that generally occur for a given scenario
such as dating or dining. Collectively, these steps would
be performed by our ConceptualAnalyzer (CA). As the
ConceptualAnalyzer makes these inferences and unifies, it
will produce ConceptualDependencies (CD) diagrams, as de-
tailed in Section 4.

Once we have modeled the story’ sentences, we can now
handle questions. Similar to how we read the story, the
LexiconAnalyzer will serve as a pre-processing step for the
questions. It convert the questions into lexicons and will
appropriately pass them to the CA for analyzing. The CA
will construct CDs (lets call them QCDs), just as it did with
the original story sentences. When one wishes, one can then
obtain answers to the questions by passing the QCDs to the
original CA that constructed the story’s sentences.

For a simplified diagram of our system’s design, see Figure
1.

Dashed Hopes

Bob was famished. His fridge was empty so he got his car.

Leones was crowded so the hostess asked him to share a

table. Alice immediately introduced herself. He thought she

was very attractive and they hit it off. When the waitress

brought the menus she ordered the salad and he the steak.

He asked her to come back to his place afterwards and she

agreed. Bob was very hopeful. After the food came Bob

said McCain should be president because government health

care in England is bad. Alice got angry. She said he was

too senile to be president. Bob felt bad. Bob’s hopes were

dashed.

As we started to think about the responsibilities of the Lex-
icon Analyzer (LA), the first thing that became apparent is
that some words of the story are meaningless individually
but have meaning as a group of words. Moreover, words of-
ten make sense only together as a clause or gerund phrase.
Although we weren’t sure if we would let the LA take respon-
sibility of resolving such phrases, we realized that at least
smaller examples or words should be handled. Specifically,
pronouns such as “he,”“his,”, “herself” clearly refer to an ac-
tor (or actress), yet our system would originally have no way
of knowing to whom the pronoun is referring. So, this is the
first task of the LA, but how should the system know how
to do this? Clearly, a masculine pronoun refers to a male;
likewise, a feminine pronoun for a female. So, this sparked
our idea to create a dictionary. The dictionary would need
to have an entry for all pronouns, and the definition would
merely state if it’s a male or female. For example, a snippet
of our dictionary follows:

he (pronoun) = male

she (pronoun) = female

him (pronoun) = male

his (pronoun) = male

hers (pronoun) = female

herself (pronoun) = female

himself (pronoun) = male

Whenever our LA sees one of these pronouns, it can attempt
to replace it with an appropriate actor. Yet, if the pronoun
is unclear and could be ambigious, the system does not at-
tempt to resolve it, for fear of corrupting the story.

Second, and along the same lines, there are two colloquial
phrases within the story that would be pretty much impos-
sible to semantically interpret. So, we re-define this phrase
within our dictionary so that it makes more sense to our
system:

hit it off (colloquial verb) = encountered fun

got his car (colloquial verb) = drove his car

We felt that it was okay to make these substitutions because
doing so did not really aid our system in any inference step;
rather, it just clarified the slang English.

Third, and most tricky, was the need to transform depen-
dent clauses into independent clauses. There were a few

motivations for this. Namely, take the following sentence for
example: “When the waitress brought the menus she ordered

the salad and he the steak.” Ignoring the fact that there is a
missing comma, the sentence has two main concepts that are
represented: (1) The waitress brought the menus; (2) She
ordered the salad and he the steak. Additionally, the first
concept enabled the second concept to occur. With regard
to CDs, we would need to represent both of these clauses.
One can then realize that every CD essentially represents
one independent clause. Moreover, every dependent clause
has an implied independent clause. We wish to resolve these
clauses by having our LA transform the entire story into a
collection of independent clauses. With this, it could then
pass these clauses to the CA so that the CA would have
nice, clean input with which to work.

The question then arose, how do we tell our system what is
a dependent clause and what is an independent clause? We
conformed to the grammar rules of English and defined an
independent clause to have a subject and a verb. (Note: we
define it such that an actor, object, or place could potentially
be the subject). And, if a sentence starts with a subordinat-
ing conjunction (i.e. after, before, wherever, even though,
while, as long as, until, because, etc), we are at the start of
a dependent clause. Our sytem then removes the subordi-
nating conjunction and converts the rest of the clause to an
indenpendent clause. For our system to correctly know the
parts of speech, we merely listed the part of speech for each
word in our dictionary.

Similarly, for compound sentences, the coordinating conjunc-

tion indicates causality of the clauses. For example, when
we have two independent clauses joined by “so,” we should
know that that the first clause causes the second to be true.
This information could be useful for our CA to appropri-
ately construct the CDs. This made us keenly aware of the
flexibility of the word “and.” Specifically, “and” is not al-
ways used as a coordinating conjunction; rather, it can also
be used as a delimeter for a list of items. When it is used
this way, the subject and verb are often implied. As is the
case in other clauses too. So, our system also kept track
of the last subject and verb. When our system had to sep-
arate a dependent clause and make it into an independent
clause, yet it lacked a subject or a verb, it knew how to in-
clude them. For example, in our above sentence of “... she
ordered the salad and he the steak,”our system would termi-
nate the clause when it sees the word “and.” The words “he
the steak” would then become its own independent clause,
but only after we inject “ordered” as the verb.

In summary, our LexicalAnalyzer’s tasks could be outlined
as follows:

• read in the dictionary file

• replace all pronouns with their antecedents, when there’s
no ambiguity

• replace colloquialisms with the dictionary’s translation

• transform dependent clauses into independent clauses

• transform all implied verbs and subjects into explicit
ones

Figure 2: Example of a CD

Figure 3: Two forms of a CDAtom

When analyzing a story, having a way to represent the se-
mantic meaning of the story is useful. Conceptual Depen-
dency (CD) diagrams give us a canonical representation of
the semantic meaning of sentences. CD diagrams combine
basic elements in a “molecular-structure” that any language
can be converted to. Figure 2 is an example CD that rep-
resents Matthias throwing a ball at Sneha: One of the crit-
icisms of CD diagrams is that there can be many ways to
represent the meaning depending on how much detail is de-
sired. Note that we could have described the ball being
thrown with Matthias grasping the ball with his hand, flex-
ing his elbow to pick it up, winding up for the throw, etc.
Therefore, there is still some flexibility in the representation
of meaning of a sentence.

We use a subset of the normal CD representation for our
project. Since we were using JAVA, we broke up the repre-
sentation into a set of 2 major classes: (1) CDAtom and (2)
CD.

A CDAtom is a simplified CD that can have either of the two
forms pictured in Figure 3. The first part of Figure 3 (the
one with a double-arrow) represents the form for an action.
The second part of the figure (the triple arrow), represents
a state change. The primary form is the double-arrow (DA)
form, which has five other fields:

• PP: person or object doing the object

• ACT: the action that is being performed

• OBJ: the object on which the ACT is being performed

• PPS: the person or place that is the originator of the
ACT

• PPD: the person or place that is the destination or
target of the ACT

Figure 4: A compound CD

Note that the OBJ field can either be a single String or an
entirely new CDAtom. This allows compound CDs, which
greatly extends our ability to represent semantic meaning.
Figure 4 is an example of a CDAtom with a non-singular
object.

the CD class represents the Conceptual Dependency of a
single clause. It contains an ArrayList of CDAtoms, and can
also be causally linked with other CDs. When our program
generates the CDs representing the story, they are stored in
an ArrayList as well. This is a version of episodic memory,
where the events that occur are all stored to one area.

The Conceptual Analyzer (CA) does the work of converting
the clauses generated from the Lexical Analyzer (LA) into
the CD form. The basic idea we followed was keying off
the verb in the clause to form the structure or skeleton of
the CD. Then, once the general structure had been created,
we tried to match parts of the clause to the proper fields in
the CD. This was aided by hints that each verb contained,
which guided the CA in figuring out what words in the clause
should go where. A variety of hints were employed that
would hint to the CA to look for an actor, object, or place.
Since the lexicon had tagged all words with their part-of-
speech, we can do a search through the clause and try to
fit the proper clause in the right field. For example, if we
try to generate the CD for “The hostess asked Bob to share
a table,” we would first get the clause that breaks up each
word and identifies it by its type (article, actor, verb, object,
etc.). Then, the CA starts from the beginning of the clause
and finds the first verb which is “asked.” Next, the CA looks
up this verb in a side “semantic” memory that contains the
hints for how this CD should look and what to look for. In
this case it comes in the form of:

asked : !PP0,DA,MTRANS,!CDA

This is a comma-separated list of the values of the fields.
The ones with the “!” represent hints to the CA, suggesting
that it should find an actor for the PP0 slot and another CD
to fill the CDA slot. The hostess is the first actor, so she is
consequently put in the PP0 slot. The CDA slot uses the
next verb which is“share.” This in turn has its own structure
to generate and attach. Note that a source and destination
were unspecified, for it is the Script’s responsibility to help
fill these in later.

If we just relied on creating CDs from the clauses, then we
would not be able to fully fill out the CDs. This is because
vital, implied information is left out in the sentences. In nor-
mal stories, these details are not mentioned because they are
too trivial and common, or it is obvious what the sentence is

referring to. The elements that are obvious to humans can
be modeled and enumerated by scripts. Scripts give a way
of organizing all the information we see. It is a set of steps
that normally occur as part of an action. By referring to our
scripts, we can deduce missing information in a story. As
such, it is another form of semantic memory that we utilize
to create our CDs.

We implemented scripts so that we could fully resolve the
ambiguous pronoun references such as “he” or “she.” More-
over, it also helps us create more specific CDs by filling in
more missing information. The general idea with scripts was
to have some “variables” that each script contained that de-
fined what was participating in the script. Therefore, in our
Dating script there were two actors involved that needed to
be resolved. Steps in the script were represented as CDs. A
match and unification function was used that would try to
find the CD that matched the closest and fill in the blanks
that it could find.

Specifically, in our dating script, the two actors X and Y
must be resolved. The first step in dating is introduction.
The matcher sees that Alice is introducing herself and con-
sequently binds“Alice” to one of the variables. Then, a later
step matches Bob asking her to his place. This then binds
Bob to the remaining variable and the script can now eas-
ily match the other steps of the dating process and resolve
references to “he” or “she.”

We also implemented a Restaurant script that details the
normal steps of going to a restaurant. By using this, we can
fill in CDs that had missing information that are so obvious
in restaurant situations. Such as when a “waitress brought
the menus,” that normally means she brings the menus to
the table. Although this is not stated in the clause and not
implied by the verb, it is obvious to anyone who has gone
to a restaurant. Thus, we see the power of scripts to put in
common-sense knowledge to our CA.

The following CDs were generated by our CA after running
our scripts.

|-

| o

| bob<=OBTAIN<-food

| /\

| ||c

| bob<=>HAPPY

|-

bob’s fridge<=>empty

/\

||c

o |->leones

bob<=PTRANS<-car-|

|-<

leones<=>crowded

/\

||c

o - o - |->bob

hostess<=MTRANS<--|bob<=PTRANS<-TABLE|-|

- - |-<hostess

|-

| o |->bob

| alice<=MTRANS<-alice-|

| |-<alice

| /\

| ||c

| o

| null<=CONC<-null

|-

o

bob<=CONC<-alice<=>attractive

o |->table

waitress<=PTRANS<-menus-|

|-<

o |->waitress

bob<=MTRANS<-salad-|

|-<bob

o

bob<=MTRANS<-steak

o - o |->bob’s place- |->alice

bob<=MTRANS<--|alice<=PTRANS<-null-| |-|

- |-< - |-<bob

o

alice<=MTRANS<-yes

bob<=>hopeful

o

food<=PTRANS<-null

o - o -

bob<=MTRANS<--|mccain<=DO<-null|

- -

alice<=>angry

o

president<=MTRANS<-president<=>senile

o

bob<=CONC<-bad

bob<=>dashed

As depicted in Figure 1, our approach to answering questions
is similar to how we interpret the original story. First, the
questions are fed into the Lexical Analyzer (LA). The LA
sees that they are questions due to their ending in with a
“?” It then looks at the beginning words of the sentence
to determine if there should be any precendence as to the
order that we try to resolve the answer. For example, if the
sentence starts with “why did,” we flag the clause to first
attempt the upstream causality link. So, let’s say that one
of our original sentences read“John shot a cop, so he went to
jail.” Let’s say that our question posed was “Why did John
go to jail.” Often times, it would be useful to first look at
the clause that preceeded the matched sentence, “John went

to jail.” Of course, inferences could be implied or happen
as a result of a much earlier sentence. Regardless, the LA
strips the questioning elements from the question and makes
it into an independent clause. So, “Why did John go to jail”
would be the resulting clause that is sent to the Conceptual
Analyzer (CA). The CA transforms all of the clauses into
CDs. For clarity purposes, let’s call these resulting CDs the
QCDs (question CDs). With this, we can then pass the
QCDs to the answerQuestions() method of the original CA
instantiation. Keep in mind that this original CA object
contains a stored copy of all the story’s sentences’ CDs. So,
the QCDs can be matched with the original CDs from the
story. Depending on the type of question, we can know if we
should return certain missing words that were matched, or if
we should return a different sentence based on its causality.
Regardless, we do not generate new sentences. Rather, our
system finds sentences that fits or answers the questions with
the needed information.

To provide a complete example, let’s look at the original
story. The dining script helped create the implied clause
“Bob drove to Leones.” So, the original CA contians a CD
that represents “Bob drove to Leones.” Let’s call this CDa.
The question “How did Bob get to Leones?” is transformed
to a QCD representing “Bob get to Leones.” We then pass
this QCD to the original CA, and it finds that the QCD
and CDa match in their representation. Yet, the missing
word is “drive.” The system then reports that “Bob drove
to Leones.”

Our system was able to correctly answer four questions:

1. How did Bob get to Leones?

Bob drove

2. Why does Bob believe McCain should be president?

Bob said McCain should be president because

government health care in England is bad

3. Why did the hostess ask Bob to sit with Alice?

Leones was crowded

4. How did Bob know Alice’s name?

Alice immediately introduced Alice

Chris Tanner and Leslie Choong shared equal responsibil-
ities on brainstorming and agreeing on the overall design.
Chris was the main force behind the Lexicon Analyzer and
came up with the ideas of what it would do and how it
would work. Similarly, Leslie was the main force behind
the Concept Analyzer and construction of the CDs. Leslie
implemented the usage of the scripts. Chris started the
Question Answering part, but only together did we come
up with how to make it all work–Leslie’s expertise with the
CAs was required. Chris badly wanted the CDs to be rep-
resented via ASCII art, and Leslie gave Piccaso a run for
his money. Chris took the main responsibility of produc-
ing the paper using LaTex with figures, but we each wrote
roughly equal amounts. Our work is publicly viewable
at http://cs.ucla.edu/ ctanner/cs263a/

The project allowed us to see that NLP truly is a highly
complex field of AI. In class, we are reminded that in order
to have perfect NLP, all of the other problems of AI must be
solved–problems such as planning, reasoning, search, vision,
etc. We truly understand and agree with this statement now,
for it is apparent that in order to create a system to thor-
oughly understand our very simple story, one would need
to make usag of reasoning, planning, goals, scripts, unifi-
cation, forward-chaining, backtracking, and more. Plus, if
more complex questions were asked, we would need to add
even more to our system.

We found it challenging to decide on a way to implement
everything, and we were particularly careful not to provide
our system with much help. We tried to make our system
fully rely on matching and unifying in order to represent the
sentences and questions. We were hesitant to construct our
CDs in the same manner that we learned about in class, but
it ended up being beneficial and was robust enough for us
to work with it the way we wanted. Our first instincts were
to make use of syntactical characteristics, such as including
part-of-speech tagging, in order to enable our system to have
something more clear to work with. It was satisfying to later
learn that this was a common approach that others use. The
usage of scripts served us well, so we were glad to learn about
them in class.

Overall, this project was quite intimidating at first, yet, we
were satisfied with our end results. In fact, as it all came to-
gether at the end, it was almost disappointing that we didn’t
have more time to try to answer more questions–especially
since the hardwork of constructing the foundation had al-
ready been done. Nevertheless, it was a good experience, a
very worthwhile project.

